Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight | Scientific Reports – Nature.com

  • Zhang, L. F. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur. J. Appl. Physiol. 113, 2873–2895 (2013).

    PubMed  Article  ADS  Google Scholar 

  • Lawley, J. S. et al. Effect of gravity and microgravity on intracranial pressure. J. Physiol. 595, 2115–2127 (2017).

    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen, L. et al. BMAL1 Disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility of simulated microgravity rats by altering circadian regulation of miR-103/CaV1.2 Signal Pathway. Int. J. Mol. Sci. 20, 3947; https://doi.org/10.3390/ijms20163947 (2019).

  • Otsuka, K. et al. Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: observational study. NPJ Microgravity 1, 15018; https://doi.org/10.1038/npjmgrav (2015).

  • Otsuka, K. et al. Long-term exposure to space’s microgravity alters the time structure of heart rate variability of astronauts. Heliyon 2, e00211; https://doi.org/10.1016/j.heliyon.2016.e00211 (2016).

  • Aoyagi, N., Ohashi, K., Tomono, S. & Yamamoto, Y. Temporal contribution of body movement to very long-term heart rate variability in humans. Am. J. Physiol. Heart Circ. Physiol. 278, H1035–H1041 (2000).

    CAS  PubMed  Article  Google Scholar 

  • Aoyagi, N., Ohashi, K. & Yamamoto, Y. Frequency characteristics of long-term heart rate variability during constant-routine protocol. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R171–R176 (2003).

    CAS  PubMed  Article  Google Scholar 

  • Le Bourg, E. A review of the effects of microgravity and of hypergravity on aging and longevity. Exp. Gerontol. 34, 319–336 (1999).

    PubMed  Article  Google Scholar 

  • Vernikos, J. & Schneider, V. S. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology 56, 157–166 (2010).

    PubMed  Article  Google Scholar 

  • Honda, Y. et al. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans. Sci. Rep. 2, 487; https://doi.org/10.1038/srep00487 (2012).

  • Ma. L., Ma, J., & Xu, K. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster. PLoS. One 23, 10: e0121600; https://doi.org/10.1371/journal.pone.0121600 (2015).

  • Garrett-Bakelman, F.E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650; https://doi.org/10.1126/science.aau8650 (2019).

  • Charles, J. B. & Pietrzyk, R. A. A year on the International Space Station: implementing a long-duration biomedical research mission. Aerosp. Med. Hum. Perform. 90, 4–11 (2019).

    PubMed  Article  Google Scholar 

  • Turner, K.J., Vasu, V. & Griffin, D.K. Telomere biology and human phenotype. Cells. 8, 73; https://doi.org/10.3390/cells8010073 (2019).

  • Lulkiewicz, M., Bajsert, J., Kopczynski, P., Barczak, W. & Rubis, B. Telomere length: how the length makes a difference. Mol. Biol. Rep. 47, 7181–7188 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nwanaji-Enwerem, J.C. et al. A longitudinal epigenetic aging and leukocyte analysis of simulated space travel: The Mars-500 mission. Cell Rep. 33, 108406; https://doi.org/10.1016/j.celrep.2020.108406 (2020).

  • Otsuka. K. et al. Anti-aging effects of long-term space missions, estimated by heart rate variability. Sci. Rep. 9, 8995; https://doi.org/10.1038/s41598-019-45387-6 (2019).

  • Otsuka. K. et al. Astronauts well-being and possibly anti-aging improved during long-duration spaceflight. Sci Rep. 11, 14907; https://doi.org/10.1038/s41598-021-94478-w (2021).

  • Otsuka. K. et al. Circadian challenge of astronauts’ unconscious mind adapting to microgravity in space, estimated by heart rate variability. Sci Rep. 8, 10381; org/https://doi.org/10.1038/s41598-018-28740-z (2018).

  • Fernandez, L.M.J. et al. Quantifying infra-slow dynamics of spectral power and heart rate in sleeping mice. J. Vis. Exp. 126, 55863; https://doi.org/10.3791/55863 (2017).

  • Lecci, S. et al. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv3, e1602026; https://doi.org/10.1126/sciadv.1602026 (2017).

  • Watson, B.O. Cognitive and physiologic impacts of the infraslow oscillation. Front. Syst. Neurosci. 12, 44: https://doi.org/10.3389/fnsys.2018.00044 (2018).

  • Okun, M., Steinmetz, N. A., Lak, A., Dervinis, M. & Harris, K. D. Distinct structure of cortical population activity on fast and infraslow timescales. Cereb. Cortex 29, 2196–2210 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • Lau, H. C. & Passingham, R. E. Unconscious activation of the cognitive control system in the human prefrontal cortex. J. Neurosci. 27, 5805–5811 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Elman, I. et al. Mechanisms Underlying unconscious processing and their alterations in post-traumatic stress disorder: neuroimaging of zero monetary outcomes contextually framed as “no losses” vs. “no gains”. Front. Neurosci. 14, 604867; https://doi.org/10.3389/fnins.2020.604867 (2020).

  • Banaclocha, M. A. Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res. Bull. 73, 21–27 (2007).

    PubMed  Article  Google Scholar 

  • Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S. & Hastings, M. H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93, 1420–1435 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hastings, M.H., Maywood, E.S. & Brancaccio, M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology (Basel) 8, 13; https://doi.org/10.3390/biology8010013 (2019).

  • Baevsky, R. M. Noninvasive methods in space cardiology. J. Cardiovasc. Diagn. Proced. 14, 161–171 (1997).

    CAS  PubMed  Google Scholar 

  • Baevsky, R. M., Petrov, V. M. & Chernikova, A. G. Regulation of autonomic nervous system in space and magnetic storms. Adv. Space Res. 22, 227–234 (1998).

    CAS  PubMed  Article  ADS  Google Scholar 

  • Ivanov, PCh. et al. Sleep-wake differences inscaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. Europhys. Lett. 48, 594–600 (1999).

    CAS  PubMed  Article  ADS  Google Scholar 

  • Gundel, A., Drescher, J., Spatenko, Y. A. & Polyakov, V. V. Changes in basal heart rate in spaceflights up to 438 days. Aviat. Space Environ. Med. 73, 17–21 (2002).

    PubMed  Google Scholar 

  • Baevskiĭ, R. M. Analysis of variability of cardiac rhythm in space medicine. Fiziol. Cheloveka 28, 70–82 (2002).

    PubMed  Google Scholar 

  • Norsk, P. et al. Vasorelaxation in space. Hypertension 47, 69–73 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Baevsky, R. M. et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. 1985(103), 156–161 (2007).

    Article  Google Scholar 

  • Verheyden, B., Liu, J., Beckers, F. & Aubert, A. E. Operational point of neural cardiovascular regulation in humans up to 6 months in space. J. Appl. Physiol. 1985(108), 646–654 (2010).

    Article  Google Scholar 

  • Hughson, R. L. et al. Cardiovascular regulation during long-duration spaceflights to the International Space Station. J. Appl. Physiol. 1985(112), 719–727 (2012).

    Article  Google Scholar 

  • Xu, D., Shoemaker, J.K., Blaber, A.P., Arbeille, P., Fraser, K. & Hughson RL. Reduced heart rate variability during sleep in long-duration spaceflight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R164–170 (2012).

  • Vandeput, S., Widjaja, D., Aubert, A. E. & Van Huffel, S. Adaptation of autonomic heart rate regulation in astronauts after spaceflight. Med. Sci. Monit. 19, 9–17 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • Norsk, P., Asmar, A., Damgaard, M. & Christensen, N. J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 593, 573–584 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Aubert, A. E. et al. Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities. NPJ. Microgravity 2, 16031. https://doi.org/10.1038/npjmgrav.2016.31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vernice, N. A., Meydan, C., Afshinnekoo, E. & Mason, C. E. Long-term spaceflight and the cardiovascular system Precis. Clin. Med. 3, 284–291 (2020).

    Google Scholar 

  • Baevsky, R. M. et al. Adaptive responses of the cardiovascular system to prolonged spaceflight conditions: assessment with Holter monitoring. J. Cardiovasc. Diagn. Proced. 14, 53–57 (1997).

    CAS  PubMed  Google Scholar 

  • Baevsky, R.M., Moser, M., Nikulina, G.A., Polyakov, V.V., Funtova, II & Chernikova, A.G. Autonomic regulation of circulation and cardiac contractility during a 14-month space flight. Acta. Astronaut. 42, 159–173 (1998).

  • Baevsky, R. M., Nikulina, G. A., Funtova, I. I. & Chernikova, A. G. Vegetative regulation of blood circulation. Orbital Station MIR 2, 36–68 (2001).

    Google Scholar 

  • Monk, T. H., Buysse, D. J. & Rose, L. R. Wrist actigraphic measures of sleep in space. Sleep 22, 948–954 (1999).

    CAS  PubMed  Google Scholar 

  • Dijk, D. J. et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1647–R1664 (2001).

    CAS  PubMed  Article  Google Scholar 

  • Barger, L. K. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 13, 904–912 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • Yamamoto, N. et al. Effects of long-term microgravity exposure in space on circadian rhythms of heart rate variability. Chronobiol. Int. 32, 327–340 (2015).

    CAS  PubMed  Article  Google Scholar 

  • Task, F. of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 93, 1043–1065 (1996).

  • Saito K, Koyama A, Yoneyama K, Sawada Y, Ohtomo, N. A recent advances in time series analysis by maximum entropy method. Hokkaido University Press (Sapporo, 1994)

  • Baria, A. T., Baliki, M. N., Parrish, T. & Apkarian, A. V. Anatomical and functional assemblies of brain BOLD oscillations. J. Neurosci. 31, 7910–7919 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bingham, C., Arbogast, B., Cornelissen, G. G., Lee, J. K. & Halberg, F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9, 397–439 (1982).

    CAS  PubMed  Google Scholar 

  • Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model 11, 16; https://doi.org/10.1186/1742-4682-11-16 (2014).

  • Otsuka, K., Cornelissen, G. & Halberg, F. Chronomics and continuous ambulatory blood pressure monitoring – Vascular chronomics: From 7-day/24-hour to lifelong monitoring. (Tokyo: Springer Japan), pp 870 + lxxv ; https://doi.org/10.1007/978-4-431-54631-3 (2016).

  • Kamide, Y., Richmond, A. D. & Matsushita, S. Estimation of ionospheric electric field, ionospheric currents and field-aligned currents from ground magnetic records. J. Geophys. Res. 86, 801–813 (1981).

    Article  ADS  Google Scholar 

  • Kamide, Y. Estimate of electromagnetic quantities in space from ground magnetic records. Science 241(4863), 328–330 (1988).

    CAS  PubMed  Article  ADS  Google Scholar 

  • Kamide, Y. et al. Combining electric field and aurora observations from DE 1 and 2 with ground magnetometer records to estimate ionospheric electromagnetic quantities. J. Geophys. Res. 94, 6723–6738 (1989).

    Article  ADS  Google Scholar 

  • Kamide, Y., Shue, J.-H., Hausman, B. A. & Freeman, J. W. Toward real-time mapping of ionospheric electric fields and currents. Adv. Space Res. 26, 213–222 (2000).

    Article  ADS  Google Scholar 

  • Kamide, Y. Our life is protected by the Earth’s atmosphere and magnetic field: what aurora research tells us. Biomed. Pharmacother. 55, 21–24 (2001).

    Article  Google Scholar 

  • Kamide, Y. & Balan, N. The importance of ground magnetic data in specifying the state of magnetosphere–ionosphere coupling: a personal view. Geosci. Lett. 3, 10; https://doi.org/10.1186/s40562-016-0042-7 (2016).

  • Hughes, M.E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442; https://doi.org/10.1371/journal.pgen.1000442 (2009).

  • Hughes, M. E. et al. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS. Genet. 8, e1002835; https://doi.org/10.1371/journal.pgen.1002835 (2012).

  • Balance, H. & Zhu, B. Revealing the hidden reality of the mammalian 12-h ultradian rhythms. Cell Mol. Life Sci. 78, 3127–3140 (2021).

    Article  CAS  Google Scholar 

  • Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).

    CAS  PubMed  Article  Google Scholar 

  • Zhu, B. et al. A Cell-Autonomous Mammalian 12 hr Clock Coordinates Metabolic and Stress Rhythms. Cell Metab. 25, 1305-1319.e9 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhu, B., Dacso, C. C. & O’Malley, B. W. Unveiling “Musica Universalis” of the Cell: A Brief History of Biological 12-Hour Rhythms. J. Endocr. Soc. 2, 727–752 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pan, Y. et al. 12-h clock regulation of genetic information flow by XBP1s. PLoS Biol. 18, e3000580; https://doi.org/10.1371/journal.pbio.3000580 (2020).

  • Wu, Y. E. et al. Ultradian calcium rhythms in the paraventricular nucleus and subparaventricular zone in the hypothalamus. Proc Natl Acad Sci U S A. 115, E9469–E9478 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd D. & and Murray D.B. The temporal architecture of eukaryotic growth. FEBS Lett. 580, 2830; https://doi.org/10.1016/j.febslet.2006.02.066 (2006).

  • Ono, D., Honma K.I. & Honma, S. Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice. Sci. Rep. 5, 12310; https://doi.org/10.1038/srep12310 (2015).

  • Andrews-Hanna, J. R. The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18, 251–270 (2012).

    PubMed  Article  Google Scholar 

  • Natale, E., Marzi, C. A. & Macaluso, E. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control. Neuropsychologia 48, 1160–1164 (2010).

    CAS  PubMed  Article  Google Scholar 

  • Chang, C. et al. Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 68, 93–104 (2013).

    PubMed  Article  Google Scholar 

  • Geng, J. J. & Vossel, S. Re-evaluating the role of TPJ in attentional control: contextual updating?. Neurosci. Biobehav. Rev. 37, 2608–2620 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • Babo-Rebelo, M., Wolpert, N., Adam, C., Hasboun, D. & Tallon-Baudry, C. Is the cardiac monitoring function related to the self in both the default network and right anterior insula? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371, 20160004; https://doi.org/10.1098/rstb.2016.0004 (2016).

  • Qin, P., Wang, M. & Northoff, G. Linking bodily, environmental and mental states in the self-A three-level model based on a meta-analysis. Neurosci. Biobehav. Rev. 115, 77–95 (2020).

    PubMed  Article  Google Scholar 

  • Demertzi, A. et al. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Struct. Funct. 221, 2873–2876 (2016).

    PubMed  Article  Google Scholar 

  • Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    PubMed  Article  Google Scholar 

  • Brancaccio, M. et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363, 187–192 (2019).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • Kang, J., Jiang, L., Goldman, S. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    CAS  PubMed  Article  Google Scholar 

  • Barca-Mayo, O. et al. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun. 8, 14336; https://doi.org/10.1038/ncomms14336 (2017).

  • Moriya, T. et al. Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice. J. Neurosci. Res. 60, 212–218 (2000).

    CAS  PubMed  Article  Google Scholar 

  • Tso, C. F. et al. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr. Biol. 27, 1055–1061 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ruben, M. D. & Hogenesch, J. B. Circadian rhythms: move over neurons – astrocytes mediate SCN clock function. Curr. Biol. 27, R339–R363 (2017).

    Article  CAS  Google Scholar 

  • Hughes, S. W., Lorincz, M. L., Parri, H.R. & Crunelli V. Infraslow (<0.1Hz) oscillations in thalamic relay nuclei. basic mechanisms and significance to health and disease states. Prog. Brain Res193, 145–162 (2011).

  • Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N. & Ikegaya, Y. Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31, 2607–2614 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Poskanzer, K. E. & Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl. Acad. Sci. USA 113, E2675–E2684 (2016).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • Horovitz, S. G. et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29, 671–682 (2008).

    PubMed  Article  Google Scholar 

  • Larson-Prior, L. J. et al. Cortical network functional connectivity in the descent to sleep. Proc. Natl. Acad. Sci. USA 106, 4489–4494 (2009).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • Robertson, J.M. The gliocentric brain. Int. J. Mol. Sci. 19, 3033; https://doi.org/10.3390/ijms19103033 (2018).

  • Onton, J.A., Kang, D.Y. & Coleman, T.P. Visualization of whole-night sleep EEG from 2-channel mobile recording device reveals distinct deep sleep stages with differential electrodermal activity. Front. Hum. Neurosci. 10, 605; https://doi.org/10.3389/fnhum.2016.00605 (2016).

  • Szabó, Z. et al. Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci. Rep. 7, 6018; https://doi.org/10.1038/s41598-017-06073-7 (2017).

  • Lőrincz, M.L., Geall, F., Bao, Y., Crunelli, V., & Hughes, S.W. ATP-dependent infra-slow (<0.1 Hz) oscillations in thalamic networks. PLoS One 4, e4447; https://doi.org/10.1371/journal.pone.0004447 (2009).

  • Miyawaki, H. & Diba, K. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 26, 893–902 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Breus, T., Cornelissen, G., Halberg, F. & Levitin, A. E. Temporal associations of life with solar and geophysical activity. Ann. Geophys. 13, 1211–1222 (1995).

    CAS  Article  ADS  Google Scholar 

  • Chibisov, S. M., Breus, T. K., Levitin, A. E. & Drogova, G. M. Biological effects of a global magnetic storm. Biofizika 40, 959–968 (1995).

    CAS  PubMed  Google Scholar 

  • Baevsky RM. et al. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr. Med. (Brno). 70, 201–206 (1997).

  • Otsuka, K. et al. Altered chronome of heart rate variability during span of high magnetic activity. Scr. Med. (Brno) 73, 111–116 (2000).

    Google Scholar 

  • Cornelissen, G. et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol. Terr. Phys. 64, 707–728 (2002).

    Article  ADS  Google Scholar 

  • Breus, T., Baevskii, R., Funtova, I. & Nikulina, G. A. Effect of geomagnetic field disturbances on the adaptive stress reaction of cosmonauts. Cosm. Res. 46, 367–372 (2008).

    Article  ADS  Google Scholar 

  • Breus, T. K., Baevskii, R. M. & Chernikova, A. G. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 5, 341–355 (2012).

    Article  Google Scholar 

  • Kato, T.A., Watabe, M. & Kanba, S. Neuron-glia interaction as a possible glue to translate the mind-brain gap: a novel multi-dimensional approach toward psychology and psychiatry. Front. Psychiatry. 4, 139; https://doi.org/10.3389/fpsyt.2013.00139. (2013)

  • Robertson, J. M. The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory formation. J. Physiol. Paris 96, 251–255 (2002).

    PubMed  Article  Google Scholar 

  • Cornelissen, G. et al. Resonance of about-weekly human heart rate rhythm with solar activity change. Biologia (Bratisl.) 51, 749–756 (1996).

    CAS  Google Scholar 

  • Otsuka, K. et al. Alternating-light-darkness-influenced human electrocardiographic magnetoreception in association with geomagnetic pulsations. Biomed. Pharmacother. 55(Suppl 1), 63s–75s (2001).

    MathSciNet  PubMed  Google Scholar 

  • Spread the love

    Leave a Reply

    Your email address will not be published.