Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques | Scientific Reports – Nature.com

  • Lewin, B., Giovannucci, D. & Varangis, P. Coffee markets: New paradigms in global supply and demand. World Bank Agric. Rural Dev. Discuss. Paper https://doi.org/10.2139/ssrn.996111 (2004).

    Article  Google Scholar 

  • Panhuysen, S. & Pierrot, J. Coffee barometer 2014. Hivos, IUCN Nederland, Oxfam, Novib, Solidaridad, WWF. (2014).

  • Torok, A., Mizik, T., Jambor, A. J. I. J. O. E. & Issues, F. The competitiveness of global coffee trade. Int. J. Econ. Financ. 8, 1–6. https://doi.org/10.32479/ijefi.6692 (2018).

    CAS  Article  Google Scholar 

  • Degaga, J. & Alamerie, K. J. E. Supply and performance of coffee markets in Gololcha district of Oromia region, Ethiopia. Ekonomika Poljoprivrede. 67, 797–816. https://doi.org/10.5937/ekopolj2003797d (2020).

    Article  Google Scholar 

  • Genanaw, T. & Lamenew, W. Indigenous knowledge management framework for coffee production in Ethiopia. Ethiop. e-J. Res. Innov. Foresight. 6, 53–61 (2019).

    Google Scholar 

  • Duarte, A., Uribe, J. C., Sarache, W. & Calderón, A. J. E. Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues. Energy 216, 119170. https://doi.org/10.1016/j.energy.2020.119170 (2021).

    CAS  Article  Google Scholar 

  • Effendi, D. & Rismaya, M. Design and development of coffee production information system to support coffee production productivity in farmers group. IOP Conf. Ser. Mater. Sci. Eng. 879, 012058. https://doi.org/10.1088/1757-899x/879/1/012058 (2020).

    Article  Google Scholar 

  • Baloi, D. & Price, A. D. J. I. J. O. P. M. Modelling global risk factors affecting construction cost performance. Int. J. Proj. Manag. 21, 261–269. https://doi.org/10.1016/s0263-7863(02)00017-0 (2003).

    Article  Google Scholar 

  • Kittichotsatsawat, Y., Jangkrajarng, V. & Tippayawong, K. Y. J. S. Enhancing coffee supply chain towards sustainable growth with big data and modern agricultural technologies. Sustainability. 13, 4593. https://doi.org/10.3390/su13084593 (2021).

    Article  Google Scholar 

  • International Coffee Organization. Developing a sustainable coffee economy (2020). http://www.ico.org/sustaindev_e.asp. Accessed 30 March 2022.

  • Chuqian, W. A study on the situation and development of the coffee industry in Thailand (2018).

  • Trébuil, G., Ekasingh, B. & Ekasingh, M. Agricultural commercialisation, diversification, and conservation of renewable resources in northern Thailand highlands. Moussons. 9–10, 131–155. https://doi.org/10.4000/moussons.2005 (2006).

    Article  Google Scholar 

  • Sutthi, C. Highland agriculture: From better to worse. Hill Tribes Today. 107–142. (1989).

  • Romani, S., Cevoli, C., Fabbri, A., Alessandrini, L. & Dalla Rosa, M. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control. J. Food Sci. 77, C960–C965. https://doi.org/10.1016/j.foodres.2020.109667 (2012).

    CAS  Article  PubMed  Google Scholar 

  • Moon, M. A. Demand and supply integration: The key to world-class demand forecasting. Walter de Gruyter https://doi.org/10.1515/9781501506024 (2018).

    Article  Google Scholar 

  • Doucoure, B., Agbossou, K. & Cardenas, A. Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renew. Energy. 92, 202–211. https://doi.org/10.1016/j.renene.2016.02.003 (2016).

    Article  Google Scholar 

  • Ashokkumar, K., Chowdary, D. D. & Sree, C. D. Data analysis and prediction on cloud computing for enhancing productivity in agriculture. IOP Conf. Ser. Mater. Sci. Eng. 590, 012014. https://doi.org/10.1088/1757-899x/590/1/012014 (2019).

    Article  Google Scholar 

  • Rajeswari, S. & Suthendran, K. Developing an agricultural product price prediction model using HADT algorithm. Int. J. Eng. Adv. Technol. 9, 569–575. https://doi.org/10.35940/ijeat.a1126.1291s419 (2019).

    Article  Google Scholar 

  • Janiesch, C., Zschech, P. & Heinrich, K. Machine learning and deep learning. Electron. Mark. 3, 685–695. https://doi.org/10.1007/s12525-021-00475-2 (2021).

    Article  Google Scholar 

  • Tripathy, A., Agrawal, A. & Rath, S. K. Classification of sentiment reviews using n-gram machine learning approach. Expert Syst. Appl. 57, 117–126. https://doi.org/10.1016/j.eswa.2016.03.028 (2016).

    Article  Google Scholar 

  • Sun, S., Cao, Z., Zhu, H. & Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern. 8, 3668–3681. https://doi.org/10.1109/tcyb.2019.2950779 (2019).

    Article  Google Scholar 

  • Valletta, J. J., Torney, C., Kings, M., Thornton, A. & Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220. https://doi.org/10.1016/j.anbehav.2016.12.005 (2017).

    Article  Google Scholar 

  • Dogan, A. & Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 166, 114060. https://doi.org/10.1016/j.eswa.2020.114060 (2021).

    Article  Google Scholar 

  • Wiens, J. & Shenoy, E. S. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis. 66, 149–153. https://doi.org/10.1093/cid/cix731 (2018).

    Article  PubMed  Google Scholar 

  • Howard, J. Artificial intelligence: Implications for the future of work. Am. J. Ind. Med. 11, 917–926. https://doi.org/10.1002/ajim.23037 (2019).

    Article  Google Scholar 

  • L’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. Machine learning with big data: Challenges and approaches. IEEE Access. 5, 7776–7797. https://doi.org/10.1109/access.2017.2696365 (2017).

    Article  Google Scholar 

  • Kim, D. et al. Review of machine learning methods in soft robotics. PLoS ONE 16, e0246102. https://doi.org/10.1371/journal.pone.0246102 (2021).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon. 11, e00938. https://doi.org/10.1016/j.heliyon.2018.e00938 (2018).

    Article  Google Scholar 

  • Lindsay, G. W. Attention in psychology, neuroscience, and machine learning. Front. Comput. Neurosci. 14, 29. https://doi.org/10.3389/fncom.2020.00029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalal, S. R. et al. In model-based testing in practice. In Proceedings of the 21st International Conference on Software Engineering—ICSE ’99. 285–294. https://doi.org/10.1145/302405.302640 (1999).

  • Brownlee, J. Supervised and unsupervised machine learning algorithms. Mach. Learn. Mastery. 3 (2016). https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/. Accessed 30 March 2022.

  • Çınar, Z. M. et al. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability. 19, 8211. https://doi.org/10.3390/su12198211 (2020).

    Article  Google Scholar 

  • Onsree, T. & Tippayawong, N. Machine learning application to predict yields of solid products from biomass torrefaction. Renew. Energy. 167, 425–432. https://doi.org/10.1016/j.renene.2020.11.099 (2021).

    CAS  Article  Google Scholar 

  • Onsree, T., Tippayawong, N., Phithakkitnukoon, S. & Lauterbach, J. Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass. Energy 249, 123676. https://doi.org/10.1016/j.energy.2022.123676 (2022).

    Article  Google Scholar 

  • Agatonovic-Kustrin, S. & Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 5, 717–727. https://doi.org/10.1016/s0731-7085(99)00272-1 (2000).

    Article  Google Scholar 

  • Singh, Y. & Chauhan, A. S. Neural networks in data mining. J. Theor. Appl. Inf. Technol. 1, 1–6 (2009).

    CAS  Google Scholar 

  • Abrougui, K. et al. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 190, 202–208. https://doi.org/10.1016/j.still.2019.01.011 (2019).

    Article  Google Scholar 

  • May, R. J., Dandy, G. C., Maier, H. R. & Nixon, J. B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 10–11, 1289–1299. https://doi.org/10.1016/j.envsoft.2008.03.008 (2008).

    Article  Google Scholar 

  • Anderson, D. & McNeill, G. Artificial neural networks technology. Kaman Sci. Corp. 6, 1–83 (1992).

    Google Scholar 

  • Zain, A. M., Haron, H. & Sharif, S. Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst. Appl. 37, 1755–1768. https://doi.org/10.1016/j.eswa.2009.07.033 (2010).

    Article  Google Scholar 

  • Togun, N. K. & Baysec, S. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl. Energy. 87, 349–355. https://doi.org/10.1016/j.apenergy.2009.08.016 (2010).

    CAS  Article  Google Scholar 

  • Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through deep visualization. Explain AI. Interpret. Explain. Vis. Deep Learn. https://doi.org/10.1007/978-3-030-28954-6_4 (2015).

    Article  Google Scholar 

  • Krenker, A., Bešter, J. & Kos, A. Introduction to the artificial neural networks. Artif. Neural Netw. Methodol. Adv. Biomed. Appl https://doi.org/10.5772/15751 (2011).

    Article  Google Scholar 

  • Kouadri, S., Pande, C. B., Panneerselvam, B., Moharir, K. N. & Elbeltagi, A. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ. Sci. Pollut. Res. 29, 21067–21091. https://doi.org/10.1007/s11356-021-17084-3 (2022).

    CAS  Article  Google Scholar 

  • Ceylan, Z. & Bulkan, S. Forecasting PM10 levels using ANN and MLR: A case study for Sakarya City. Glob. Nest J. 20, 281–290. https://doi.org/10.30955/gnj.002522 (2018).

    CAS  Article  Google Scholar 

  • Shams, S. R., Jahani, A., Kalantary, S., Moeinaddini, M. & Khorasani, N. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 37, 100837. https://doi.org/10.1016/j.uclim.2021.100837 (2021).

    Article  Google Scholar 

  • Chakraborty, A. & Goswami, D. Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab. J. Geosci. 10, 1–11. https://doi.org/10.1007/s12517-017-3167-x (2017).

    Article  Google Scholar 

  • Louis, B., Agrawal, V. K. & Khadikar, P. V. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur. J. Med. Chem. 45, 4018–4025. https://doi.org/10.1016/j.ejmech.2010.05.059 (2010).

    CAS  Article  PubMed  Google Scholar 

  • Ekemen Keskin, T., Özler, E., Şander, E., Düğenci, M. & Ahmed, M. Y. Prediction of electrical conductivity using ANN and MLR: A case study from Turkey. Acta Geophys. 68, 811–820. https://doi.org/10.1007/s11600-020-00424-1 (2020).

    ADS  Article  Google Scholar 

  • Lee, K. Y., Chung, N. & Hwang, S. Application of an artificial neural network (ANN) model for predicting mosquito abundances in urban areas. Ecol. Inform. 36, 172–180. https://doi.org/10.1016/j.ecoinf.2015.08.011 (2016).

    Article  Google Scholar 

  • Chutsagulprom, N., Chaisee, K., Wongsaijai, B., Inkeaw, P. & Oonariya, C. Spatial interpolation methods for estimating monthly rainfall distribution in Thailand. Theor. Appl. Climatol. 148, 1–12. https://doi.org/10.21203/rs.3.rs-568778/v1 (2022).

    Article  Google Scholar 

  • Chen, L. J., Lian, G. P. & Han, L. J. Prediction of human skin permeability using artificial neural network (ANN) modeling. Acta Pharmacol. Sin. 28, 591–600. https://doi.org/10.1111/j.1745-7254.2007.00528.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • Soroushmehr, S. R. & Najarian, K. Transforming big data into computational models for personalized medicine and health care. Dialogues Clin. Neurosci. https://doi.org/10.31887/dcns.2016.18.3/ssoroushmehr (2022).

    Article  Google Scholar 

  • Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Hernandez-Gonzalez, M. A. & Solorio-Meza, S. E. Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 24, 5507. https://doi.org/10.3390/app9245507 (2019).

    Article  Google Scholar 

  • Priya, D. K., Sam, B. B., Lavanya, S. & Sajin, A. P. A survey on medical image denoising using optimisation technique and classification. Int. Conf. Inf. Commun. Embed. Syst. https://doi.org/10.1109/icices.2017.8070729 (2017).

    Article  Google Scholar 

  • Patil, J. V. & Bailke, P. Real time facial expression recognition using RealSense camera and ANN. Int. Conf. Invent. Comput. Technol. 2, 1–6. https://doi.org/10.1109/inventive.2016.7824820 (2016).

    Article  Google Scholar 

  • Islam, K. T. & Raj, R. G. Real-time (vision-based) road sign recognition using an artificial neural network. Sensors. 17, 853. https://doi.org/10.3390/s17040853 (2017).

    ADS  Article  PubMed Central  Google Scholar 

  • Lahmyed, R., Ansari, M. E. & Kerkaou, Z. J. S. C. Automatic road sign detection and recognition based on neural network. Soft Comput. 26, 1–22. https://doi.org/10.1007/s00500-021-06726-w (2022).

    Article  Google Scholar 

  • Kryvinska, N., Poniszewska-Maranda, A. & Gregus, M. An approach towards service system building for road traffic signs detection and recognition. Proc. Comput. Sci. 141, 64–71. https://doi.org/10.1016/j.procs.2018.10.150 (2018).

    Article  Google Scholar 

  • Chauhan, R., Dumka, P. & Mishra, D. R. Modelling conventional and solar earth still by using the LM algorithm-based artificial neural network. Int. J. Ambient Energy. 43, 1389–1396. https://doi.org/10.1080/01430750.2019.1707113 (2022).

    CAS  Article  Google Scholar 

  • Zaefizadeh, M., Jalili, A., Khayatnezhad, M., Gholamin, R. & Mokhtari, T. Comparison of multiple linear regressions (MLR) and artificial neural network (ANN) in predicting the yield using its components in the hulless barley. Adv. Environ. Biol. 5, 109–114 (2011).

    Google Scholar 

  • Anita, S. In classification Cherry’s Coffee using k-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). In 2020 International Conference on Information Technology Systems and Innovation (ICITSI).117–122 (IEEE). https://doi.org/10.1109/icitsi50517.2020.9264925 (2020).

  • Ahmad, A. S. et al. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 33, 102–109. https://doi.org/10.1016/j.rser.2014.01.069 (2014).

    ADS  Article  Google Scholar 

  • Leme, D. S., da Silva, S. A., Barbosa, B. H. G., Borém, F. M. & Pereira, R. G. F. A. Recognition of coffee roasting degree using a computer vision system. Comput. Electron. Agric. 156, 312–317. https://doi.org/10.1016/j.compag.2018.11.029 (2019).

    Article  Google Scholar 

  • Van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177, 105709. https://doi.org/10.1016/j.compag.2020.105709 (2020).

    Article  Google Scholar 

  • Torkashvand, A. M., Ahmadi, A. & Nikravesh, N. L. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). J. Integr. Agric. 7, 1634–1644. https://doi.org/10.1016/s2095-3119(16)61546-0 (2017).

    CAS  Article  Google Scholar 

  • Dhyani, S. Predicting Rainfall for Agriculture in India Using Regression (Dublin Business School, 2020). https://esource.dbs.ie/handle/10788/4230.

  • Etminan, A. et al. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Res. Commun. 47, 170–181. https://doi.org/10.1556/0806.46.2018.057 (2019). Accessed 30 March 2022.

    Article  Google Scholar 

  • Afan, H. A. et al. ANN based sediment prediction model utilizing different input scenarios. Water Resour. Manag. 4, 1231–1245. https://doi.org/10.1007/s11269-014-0870-1 (2015).

    Article  Google Scholar 

  • Bouktif, S., Fiaz, A., Ouni, A. & Serhani, M. A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 7, 1636. https://doi.org/10.3390/en11071636 (2018).

    Article  Google Scholar 

  • Landwehr, N., Hall, M. & Frank, E. Logistic model trees. Mach. Learn. Mastery. 1, 161–205. https://doi.org/10.1007/s10994-005-0466-3 (2005).

    Article  MATH  Google Scholar 

  • Wilkinson, L. Statistical methods in psychology journals: Guidelines and explanations. Am. Psychol. 8, 594. https://doi.org/10.1037/0003-066x.54.8.594 (1999).

    Article  Google Scholar 

  • Kath, J., Byrareddy, V. M., Mushtaq, S., Craparo, A. & Porcel, M. Temperature and rainfall impacts on robusta coffee bean characteristics. Clim. Risk Manag. 32, 100281. https://doi.org/10.1016/j.crm.2021.100281 (2021).

    Article  Google Scholar 

  • Jayakumar, M., Rajavel, M. & Surendran, U. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. Int. J. Biometeorol. 12, 1943–1952. https://doi.org/10.1007/s00484-016-1181-4 (2016).

    Article  Google Scholar 

  • Ilaboya, I. R. & Igbinedion, O. E. Performance of multiple linear regression (MLR) and artificial neural network (ANN) for the prediction of monthly maximum rainfall in Benin City, Nigeria. Int. J. Eng. Sci. Appl. 1, 21–37 (2019).

    Google Scholar 

  • Katongtung, T., Onsree, T. & Tippayawong, N. Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Bioresour. Technol. 344, 126278. https://doi.org/10.1016/j.biortech.2021.126278 (2022).

    CAS  Article  PubMed  Google Scholar 

  • Wongchai, W., Onsree, T., Sukkam, N., Promwungkwa, A. & Tippayawong, N. Machine learning models for estimating above ground biomass of fast growing trees. Expert Syst. Appl. 199, 117186. https://doi.org/10.1016/j.eswa.2022.117186 (2022).

    Article  Google Scholar 

  • Bayat, M., Ghorbanpour, M., Zare, R., Jaafari, A. & Pham, B. T. Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran. Comput. Electron. Agric. 164, 104929. https://doi.org/10.1016/j.compag.2019.104929 (2019).

    Article  Google Scholar 

  • Ustaoglu, B., Cigizoglu, H. & Karaca, M. Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorol. Appl. 15, 431–445. https://doi.org/10.1002/met.83 (2008).

    ADS  Article  Google Scholar 

  • El-Shafie, A., Mukhlisin, M., Najah, A. A. & Taha, M. R. Performance of artificial neural network and regression techniques for rainfall-runoff prediction. Int. J. Phys. Sci. 6, 1997–2003. https://doi.org/10.54302/mausam.v62i1.4711 (2011).

    Article  Google Scholar 

  • Matsumura, K., Gaitan, C. F., Sugimoto, K., Cannon, A. J. & Hsieh, W. W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. 153, 399–410. https://doi.org/10.1017/s0021859614000392 (2015).

    Article  Google Scholar 

  • Patle, G., Chettri, M. & Jhajharia, D. Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Supply 20, 800–808. https://doi.org/10.2166/ws.2019.189 (2020).

    Article  Google Scholar 

  • Kisi, O., Tombul, M. & Kermani, M. Z. Modeling soil temperatures at different depths by using three different neural computing techniques. Theor. Appl. Climatol. 121, 377–387. https://doi.org/10.1007/s00704-014-1232-x (2015).

    ADS  Article  Google Scholar 

  • Yasar, A., Simsek, E., Bilgili, M., Yucel, A. & Ilhan, I. Estimation of relative humidity based on artificial neural network approach in the Aegean Region of Turkey. Meteorol. Atmos. Phys. 115, 81–87. https://doi.org/10.1007/s00703-011-0168-2 (2012).

    ADS  Article  Google Scholar 

  • Li, Y. et al. Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the US. Field Crops Res. 234, 55–65. https://doi.org/10.1016/j.fcr.2019.02.005 (2019).

    Article  Google Scholar 

  • Han, X. et al. Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. J. Hydrol. 596, 126104. https://doi.org/10.1016/j.jhydrol.2021.126104 (2021).

    Article  Google Scholar 

  • Adisa, O. M. et al. Application of artificial neural network for predicting maize production in South Africa. Sustainability. 4, 1145. https://doi.org/10.3390/su11041145 (2019).

    Article  Google Scholar 

  • Gonzalez-Sanchez, A., Frausto-Solis, J. & Ojeda-Bustamante, W. Attribute selection impact on linear and nonlinear regression models for crop yield prediction. Sci. World J. 2014, 1–10. https://doi.org/10.1155/2014/509429 (2014).

    Article  Google Scholar 

  • Balakrishnan, N. & Muthukumarasamy, G. Crop production-ensemble machine learning model for prediction. Int. J. Comput. Sci. Softw. Eng. 7, 148 (2016).

    Google Scholar 

  • Leng, J. et al. A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0. J. Clean. Prod. 280, 124405. https://doi.org/10.1016/j.jclepro.2020.124405 (2021).

    Article  Google Scholar 

  • Leng, J., Chen, Q., Mao, N. & Jiang, P. Combining granular computing technique with deep learning for service planning under social manufacturing contexts. Knowl. Based Syst. 143, 295–306. https://doi.org/10.1016/j.knosys.2017.07.023 (2018).

    Article  Google Scholar 

  • Phromphithak, S., Onsree, T. & Tippayawong, N. Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642. https://doi.org/10.1016/j.biortech.2020.124642 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Leng, J. et al. Bi-level artificial intelligence model for risk classification of acute respiratory diseases based on Chinese clinical data. Appl. Intell. https://doi.org/10.1007/s10489-022-03222-y (2022).

    Article  Google Scholar 

  • Leng, J. & Jiang, P. Granular computing–based development of service process reference models in social manufacturing contexts. Concurr. Eng. 25, 95–107. https://doi.org/10.1177/1063293×16666312 (2017).

    Article  Google Scholar 

  • Bu, F. & Wang, X. A smart agriculture IoT system based on deep reinforcement learning. Future Gener. Comput. Syst. 99, 500–507. https://doi.org/10.1016/j.future.2019.04.041 (2019).

    Article  Google Scholar 

  • Hsu, K. L., Gupta, H. V. & Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 10, 2517–2530. https://doi.org/10.1029/95wr01955 (1995).

    ADS  Article  Google Scholar 

  • Spread the love

    Leave a Reply

    Your email address will not be published.