Moving towards vertically integrated artificial intelligence development | npj Digital Medicine – Nature.com

  • Zhang, J. et al. An interactive dashboard to track themes, development maturity, and global equity in clinical artificial intelligence research. Lancet Digital Health 4, e212–e213 (2022).

    Article  Google Scholar 

  • Pretnik, R. & Krotz, L. Healthcare AI 2020. https://klasresearch.com/report/healthcare-ai-2020-investment-continuesbut-results-slower-than-expected-a-decision-insights-report/1443 (2020).

  • Rob, B. et al. Top of Mind for Top Health Systems. https://paddahealth.com/wpcontent/uploads/2020/11/Top_of_Mind_for_Top_Health_Systems_2021_CCM_Reports_FINAL.pdf (2020).

  • Balakrishnan, T., Chui, M., Hall, B. & Henke, N. The State of AI in 2020. https://www.mckinsey.com/business-functions/quantumblack/ourinsights/global-survey-the-state-of-ai-in-2020 (2020).

  • Lavender, J. Venture Pulse: Investment in AI for healthcare soars. https://home.kpmg/xx/en/home/insights/2018/04/venture-pulse-q1-18-globalanalysis-of-venture-funding.html (2018).

  • Benjamens, S., Dhunnoo, P. & Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digit. Med. 3, 118 (2020).

    Article  Google Scholar 

  • Wu, E. et al. How medical AI devices are evaluated: Limitations and recommendations from an analysis of FDA approvals. Nat. Med. 27, 582–584 (2021).

    CAS  Article  Google Scholar 

  • Lyell, D., Coiera, E., Chen, J., Shah, P. & Magrabi, F. How machine learning is embedded to support clinician decision making: an analysis of FDA-approved medical devices. BMJ Health Care Inf. 28, e100301 (2021).

    Article  Google Scholar 

  • McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).

    CAS  PubMed  Google Scholar 

  • Freeman, K. et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: Systematic review of test accuracy. BMJ n1872. https://doi.org/10.1136/bmj.n1872 (2021).

  • Nagendran, M. et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ m689. https://doi.org/10.1136/bmj.m689 (2020).

  • Aggarwal, R. et al. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. npj Digit. Med. 4, 65 (2021).

    Article  Google Scholar 

  • Shen, J. et al. Artificial intelligence versus clinicians in disease diagnosis: Systematic review. JMIR Med. Inf. 7, e10010 (2019).

    Article  Google Scholar 

  • Andrew Ng. MLOps: From model-centric to data-centric AI. https://www.deeplearning.ai/wpcontent/uploads/2021/06/MLOps-From-Model-centric-to-Data-centric-AI.pdf (2021).

  • Lowe, D. Machine Learning Deserves Better Than This. https://www.science.org/content/blog-post/machine-learning-deserves-better (2021).

  • Navarro, C. L. A. et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. BMJ 375, n2281 (2021).

    Google Scholar 

  • Wilkinson, J. et al. Time to reality check the promises of machine learning-powered precision medicine. Lancet Digital Health 2, e677–e680 (2020).

    Article  Google Scholar 

  • Panch, T., Mattie, H. & Celi, L. A. The “inconvenient truth” about AI in healthcare. npj Digit. Med. 2, 77 (2019).

    Article  Google Scholar 

  • Wawira Gichoya, J., McCoy, L. G., Celi, L. A. & Ghassemi, M. Equity in essence: a call for operationalising fairness in machine learning for healthcare. BMJ Health Care Inf. 28, e100289 (2021).

    Article  Google Scholar 

  • MI in Healthcare Workshop Working Group. Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency. npj Digit. Med. 3, 47 (2020).

    Article  Google Scholar 

  • Beede, E. et al. A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 1–12 (ACM,). https://doi.org/10.1145/3313831.3376718 (2020).

  • Strickland, E. IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE Spectr. 56, 24–31 (2019).

    Article  Google Scholar 

  • Wong, A. et al. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Intern. Med. 181, 1065 (2021).

    Article  Google Scholar 

  • Cam, A. Chui, M. & Hall, B. Global AI Survey: AI proves its worth, but few scale impact. (2019).

  • Rao, A. & Verweij, G. Global Artificial Intelligence Study: Exploiting the AI Revolution.

  • Dang, Y., Lin, Q. & Huang, P. AIOps: Real-World Challenges and Research Innovations. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) 4–5 (IEEE, 2019). https://doi.org/10.1109/ICSE-Companion.2019.00023.

  • Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 195 (2019).

    Article  Google Scholar 

  • Reddy, S. et al. Evaluation framework to guide implementation of AI systems into healthcare settings. BMJ Health Care Inf. 28, e100444 (2021).

    Article  Google Scholar 

  • Gallifant, J. et al. Artificial intelligence for mechanical ventilation: systematic review of design, reporting standards, and bias. British Journal of Anaesthesia S0007091221006206, https://doi.org/10.1016/j.bja.2021.09.025 (2021).

  • Collins, G. S. et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11, e048008 (2021).

    Article  Google Scholar 

  • Sounderajah, V. et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11, e047709 (2021).

    Article  Google Scholar 

  • Berisha, V. et al. Digital medicine and the curse of dimensionality. npj Digit. Med. 4, 153 (2021).

    Article  Google Scholar 

  • Futoma, J., Simons, M., Panch, T., Doshi-Velez, F. & Celi, L. A. The myth of generalisability in clinical research and machine learning in health care. Lancet Digital Health 2, e489–e492 (2020).

    Article  Google Scholar 

  • Arnold, M. et al. Towards Automating the AI Operations Lifecycle. arXiv:2003.12808 [cs] (2020).

  • Adamson, A. S. & Welch, H. G. Machine learning and the cancer-diagnosis problem — No gold standard. N. Engl. J. Med. 381, 2285–2287 (2019).

    Article  Google Scholar 

  • Wolff, J., Pauling, J., Keck, A. & Baumbach, J. Systematic Review of Economic Impact Studies of Artificial Intelligence in Health Care. J. Med. Internet Res. 22, e16866 (2020).

    Article  Google Scholar 

  • Zhang, J. et al. Best practices in the real-world data life cycle. PLOS Digit. Health 1, e0000003 (2022).

    Article  Google Scholar 

  • Budrionis, A. & Bellika, J. G. The learning healthcare system: Where are we now? A systematic review. J. Biomed. Inform. 64, 87–92 (2016).

    Article  Google Scholar 

  • Whebell, S. & Zhang, J. Bringing biological ARDS phenotypes to the bedside with machine-learning-based classifiers. Lancet Respiratory Med. 10, 319–320 (2022).

    CAS  Article  Google Scholar 

  • Mali, S. A. et al. Making radiomics more reproducible across scanner and imaging protocol variations: A review of harmonization. Methods JPM 11, 842 (2021).

    Article  Google Scholar 

  • Huser, V., Williams, N. D. & Mayer, C. S. Linking provider specialty and outpatient diagnoses in medicare claims data: Data quality implications. Appl Clin. Inf. 12, 729–736 (2021).

    Article  Google Scholar 

  • Dakka, M. A. et al. Automated detection of poor-quality data: case studies in healthcare. Sci. Rep. 11, 18005 (2021).

    CAS  Article  Google Scholar 

  • Sholle, E. T. et al. Underserved populations with missing race ethnicity data differ significantly from those with structured race/ethnicity documentation. J. Am. Med. Inform. Assoc. 26, 722–729 (2019).

    Article  Google Scholar 

  • Maille, B. et al. Smartwatch electrocardiogram and artificial intelligence for assessing cardiac-rhythm safety of drug therapy in the COVID-19 pandemic. The QT-logs study. Int. J. Cardiol. 331, 333–339 (2021).

    Article  Google Scholar 

  • Kwon, J. et al. Artificial Intelligence-Enhanced Smartwatch ECG for Heart Failure-Reduced Ejection Fraction Detection by Generating 12-Lead ECG. Diagnostics 12, 654 (2022).

    Article  Google Scholar 

  • Brown, M. & McCool, B. P. Vertical integration: exploration of a popular strategic concept. Health Care Manag. Rev. 11, 7–19 (1986).

    CAS  Article  Google Scholar 

  • Kumpe, T. & Bolwijn, P. T. Manufacturing: The New Case for Vertical Integration. 8, 75 (1988).

  • Mayo Clinic Platform. Mayo Clinic Platform: Products and Services. Mayo Clinic Platform https://www.mayoclinicplatform.org/products-and-services/ (2021).

  • Murugadoss, K. et al. Building a best-in-class automated de-identification tool for electronic health records through ensemble learning. Patterns 100255. https://doi.org/10.1016/j.patter.2021.100255 (2021).

  • Hannah Mitchell. Mayo Clinic AI factory has dozens of projects underway. Becker’s Hospital Review https://www.beckershospitalreview.com/innovation/mayo-clinic-ai-factory-has-dozens-of-projects-underway.html (2021).

  • Yao, X. et al. Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat. Med. 27, 815–819 (2021).

    CAS  Article  Google Scholar 

  • Giudicessi, J. R. et al. Artificial Intelligence–Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device. Circulation 143, 1274–1286 (2021).

    CAS  Article  Google Scholar 

  • Mahayni, A. A. et al. Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac Surgery. Mayo Clin. Proc. 96, 3062–3070 (2021).

    Article  Google Scholar 

  • McMurry, R. et al. Real-time analysis of a mass vaccination effort confirms the safety of FDA-authorized mRNA vaccines for COVID-19 from Moderna and Pfizer/BioNtech. http://medrxiv.org/lookup/doi/10.1101/2021.02.20.21252134 (2021).

  • Mayo Clinic. Mayo Clinic: Emerging Capabilities in the Science of Artificial Intelligence. Mayoclinic.org https://www.mayoclinic.org/giving-to-mayo-clinic/our-priorities/artificial-intelligence (2021).

  • Susan Barber Lindquist. Mayo Clinic Platform_Accelerate program begins with four AI startups. Mayo Clinic News Network https://newsnetwork.mayoclinic.org/discussion/3-23-mayo-clinic-platform_accelerate-program-begins-with-four-ai-startups/ (2022).

  • Nakisige, C., Schwartz, M. & Ndira, A. O. Cervical cancer screening and treatment in Uganda. Gynecologic Oncol. Rep. 20, 37–40 (2017).

    Article  Google Scholar 

  • William, W., Ware, A., Basaza-Ejiri, A. H. & Obungoloch, J. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Computer Methods Prog. Biomedicine 164, 15–22 (2018).

    Article  Google Scholar 

  • William, W., Ware, A., Basaza-Ejiri, A. H. & Obungoloch, J. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images. BioMed. Eng. OnLine 18, 16 (2019).

    Article  Google Scholar 

  • AIX-COVNET et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

    Article  Google Scholar 

  • Wynants, L. et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ m1328. https://doi.org/10.1136/bmj.m1328 (2020).

  • Dan Bamford & Samantha Gan. NHS X – AI in Health and Care Award. (2020).

  • Richard Torbett. Models of Access to Health Data in the UK. (2022).

  • Rieke, N. et al. The future of digital health with federated learning. npj Digit. Med. 3, 119 (2020).

    Article  Google Scholar 

  • AI Centre for Value Based Healthcare. AI4VBH: Platforms. https://www.aicentre.co.uk/platforms#view2 (2022).

  • US FDA Center for Devices and Radiological Health. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. (2021).

  • Medicines & Healthcare Products Regulatory Agency. Software and AI as a Medical Device Change Programme. (2021).

  • John, M. M., Olsson, H. H. & Bosch, J. Towards MLOps: A Framework and Maturity Model. in 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 1–8 (IEEE, 2021). https://doi.org/10.1109/SEAA53835.2021.00050.

  • Spread the love

    Leave a Reply

    Your email address will not be published.