Machine learning in project analytics: a data-driven framework and case study | Scientific Reports – Nature.com

  • Venkrbec, V. & Klanšek, U. In: Advances and Trends in Engineering Sciences and Technologies II 685–690 (CRC Press, 2016).

    Google Scholar 

  • Damnjanovic, I. & Reinschmidt, K. Data Analytics for Engineering and Construction Project Risk Management (Springer, 2020).

    Book  Google Scholar 

  • Singh, H. Project Management Analytics: A Data-driven Approach to Making Rational and Effective Project Decisions (FT Press, 2015).

    Google Scholar 

  • Frame, J. D. & Chen, Y. Why Data Analytics in Project Management? (Auerbach Publications, 2018).

    Book  Google Scholar 

  • Ong, S. & Uddin, S. Data Science and Artificial Intelligence in Project Management: The Past, Present and Future. J. Mod. Proj. Manag. 7, 26–33 (2020).

    Google Scholar 

  • Bilal, M. et al. Investigating profitability performance of construction projects using big data: A project analytics approach. J. Build. Eng. 26, 100850 (2019).

    Article  Google Scholar 

  • Radziszewska-Zielina, E. & Sroka, B. Planning repetitive construction projects considering technological constraints. Open Eng. 8, 500–505 (2018).

    Article  Google Scholar 

  • Neely, A. D., Adams, C. & Kennerley, M. The Performance Prism: The Scorecard for Measuring and Managing Business Success (Prentice Hall Financial Times, 2002).

    Google Scholar 

  • Kanakaris, N., Karacapilidis, N., Kournetas, G. & Lazanas, A. In: International Conference on Operations Research and Enterprise Systems. 135–155 Springer.

  • Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260 (2015).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

  • Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press, 2014).

    MATH  Book  Google Scholar 

  • Rahimian, F. P., Seyedzadeh, S., Oliver, S., Rodriguez, S. & Dawood, N. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 110, 103012 (2020).

    Article  Google Scholar 

  • Sanni-Anibire, M. O., Zin, R. M. & Olatunji, S. O. Machine learning model for delay risk assessment in tall building projects. Int. J. Constr. Manag. 22, 1–10 (2020).

    Google Scholar 

  • Cong, J. et al. A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Comput. Ind. Eng. 165, 107939 (2022).

    Article  Google Scholar 

  • Li, F., Chen, C.-H., Lee, C.-H. & Feng, S. Artificial intelligence-enabled non-intrusive vigilance assessment approach to reducing traffic controller’s human errors. Knowl. Based Syst. 239, 108047 (2021).

    Article  Google Scholar 

  • Mohri, M., Rostamizadeh, A. & Talwalkar, A. Foundations of Machine Learning (MIT press, 2018).

    MATH  Google Scholar 

  • Whyte, J., Stasis, A. & Lindkvist, C. Managing change in the delivery of complex projects: Configuration management, asset information and ‘big data’. Int. J. Proj. Manag. 34, 339–351 (2016).

    Article  Google Scholar 

  • Zangeneh, P. & McCabe, B. Ontology-based knowledge representation for industrial megaprojects analytics using linked data and the semantic web. Adv. Eng. Inform. 46, 101164 (2020).

    Article  Google Scholar 

  • Akinosho, T. D. et al. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 32, 101827 (2020).

    Article  Google Scholar 

  • Soman, R. K., Molina-Solana, M. & Whyte, J. K. Linked-Data based constraint-checking (LDCC) to support look-ahead planning in construction. Autom. Constr. 120, 103369 (2020).

    Article  Google Scholar 

  • Soman, R. K. & Whyte, J. K. Codification challenges for data science in construction. J. Constr. Eng. Manag. 146, 04020072 (2020).

    Article  Google Scholar 

  • Soman, R. K. & Molina-Solana, M. Automating look-ahead schedule generation for construction using linked-data based constraint checking and reinforcement learning. Autom. Constr. 134, 104069 (2022).

    Article  Google Scholar 

  • Shi, F., Soman, R. K., Han, J. & Whyte, J. K. Addressing adjacency constraints in rectangular floor plans using Monte-Carlo tree search. Autom. Constr. 115, 103187 (2020).

    Article  Google Scholar 

  • Chen, L. & Whyte, J. Understanding design change propagation in complex engineering systems using a digital twin and design structure matrix. Eng. Constr. Archit. Manag. (2021).

  • Allison, J. T. et al. Artificial intelligence and engineering design. J. Mech. Des. 144, 020301 (2022).

    Article  Google Scholar 

  • Dutta, D. & Bose, I. Managing a big data project: The case of ramco cements limited. Int. J. Prod. Econ. 165, 293–306 (2015).

    Article  Google Scholar 

  • Bilal, M. & Oyedele, L. O. Guidelines for applied machine learning in construction industry—A case of profit margins estimation. Adv. Eng. Inform. 43, 101013 (2020).

    Article  Google Scholar 

  • Tayefeh Hashemi, S., Ebadati, O. M. & Kaur, H. Cost estimation and prediction in construction projects: A systematic review on machine learning techniques. SN Appl. Sci. 2, 1–27 (2020).

    Article  Google Scholar 

  • Arage, S. S. & Dharwadkar, N. V. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). 594–599 (IEEE, 2017).

  • Cheng, C.-H., Chang, J.-R. & Yeh, C.-A. Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost. Technol. Forecast. Soc. Chang. 73, 524–542 (2006).

    Article  Google Scholar 

  • Joukar, A. & Nahmens, I. Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method. J. Constr. Eng. Manag. 142, 04015051 (2016).

    Article  Google Scholar 

  • Xu, J.-W. & Moon, S. Stochastic forecast of construction cost index using a cointegrated vector autoregression model. J. Manag. Eng. 29, 10–18 (2013).

    Article  Google Scholar 

  • Narbaev, T. & De Marco, A. Combination of growth model and earned schedule to forecast project cost at completion. J. Constr. Eng. Manag. 140, 04013038 (2014).

    Article  Google Scholar 

  • Naeni, L. M., Shadrokh, S. & Salehipour, A. A fuzzy approach for the earned value management. Int. J. Proj. Manag. 29, 764–772 (2011).

    Article  Google Scholar 

  • Ponz-Tienda, J. L., Pellicer, E. & Yepes, V. Complete fuzzy scheduling and fuzzy earned value management in construction projects. J. Zhejiang Univ. Sci. A 13, 56–68 (2012).

    Article  Google Scholar 

  • Yu, F., Chen, X., Cory, C. A., Yang, Z. & Hu, Y. An active construction dynamic schedule management model: Using the fuzzy earned value management and BP neural network. KSCE J. Civ. Eng. 25, 2335–2349 (2021).

    Article  Google Scholar 

  • Bonato, F. K., Albuquerque, A. A. & Paixão, M. A. S. An application of earned value management (EVM) with Monte Carlo simulation in engineering project management. Gest. Produção 26, e4641 (2019).

    Article  Google Scholar 

  • Batselier, J. & Vanhoucke, M. Empirical evaluation of earned value management forecasting accuracy for time and cost. J. Constr. Eng. Manag. 141, 05015010 (2015).

    Article  Google Scholar 

  • Yang, R. J. & Zou, P. X. Stakeholder-associated risks and their interactions in complex green building projects: A social network model. Build. Environ. 73, 208–222 (2014).

    Article  Google Scholar 

  • Uddin, S. Social network analysis in project management–A case study of analysing stakeholder networks. J. Mod. Proj. Manag. 5, 106–113 (2017).

    Google Scholar 

  • Ong, S. & Uddin, S. Co-evolution of project stakeholder networks. J. Mod. Proj. Manag. 8, 96–115 (2020).

    Google Scholar 

  • Khanzode, K. C. A. & Sarode, R. D. Advantages and disadvantages of artificial intelligence and machine learning: A literature review. Int. J. Libr. Inf. Sci. (IJLIS) 9, 30–36 (2020).

    Google Scholar 

  • Loyola-Gonzalez, O. Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019).

    Article  Google Scholar 

  • Abioye, S. O. et al. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Build. Eng. 44, 103299 (2021).

    Article  Google Scholar 

  • Doloi, H., Sawhney, A., Iyer, K. & Rentala, S. Analysing factors affecting delays in Indian construction projects. Int. J. Proj. Manag. 30, 479–489 (2012).

    Article  Google Scholar 

  • Alkhaddar, R., Wooder, T., Sertyesilisik, B. & Tunstall, A. Deep learning approach’s effectiveness on sustainability improvement in the UK construction industry. Manag. Environ. Qual. Int. J. 23, 126–139 (2012).

    Article  Google Scholar 

  • Gondia, A., Siam, A., El-Dakhakhni, W. & Nassar, A. H. Machine learning algorithms for construction projects delay risk prediction. J. Constr. Eng. Manag. 146, 04019085 (2020).

    Article  Google Scholar 

  • Witten, I. H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005).

    MATH  Google Scholar 

  • Kanakaris, N., Karacapilidis, N. I. & Lazanas, A. In: ICORES. 362–369.

  • Heo, S., Han, S., Shin, Y. & Na, S. Challenges of data refining process during the artificial intelligence development projects in the architecture engineering and construction industry. Appl. Sci. 11, 10919 (2021).

    CAS  Article  Google Scholar 

  • Bross, I. D. How to use ridit analysis. Biometrics 14, 18–38 (1958).

    Article  Google Scholar 

  • Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 1–16 (2019).

    Article  Google Scholar 

  • LaValle, S. M., Branicky, M. S. & Lindemann, S. R. On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 23, 673–692 (2004).

    Article  Google Scholar 

  • Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).

    Article  Google Scholar 

  • Saxena, A. Survey on Road Construction Delay, https://www.kaggle.com/amansaxena/survey-on-road-construction-delay (2021).

  • Noble, W. S. What is a support vector machine?. Nat. Biotechnol. 24, 1565–1567 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (John Wiley & Sons, 2013).

    MATH  Book  Google Scholar 

  • LaValley, M. P. Logistic regression. Circulation 117, 2395–2399 (2008).

    PubMed  Article  Google Scholar 

  • Menard, S. Applied Logistic Regression Analysis Vol. 106 (Sage, 2002).

    Book  Google Scholar 

  • Batista, G. E. & Monard, M. C. A study of K-nearest neighbour as an imputation method. His 87, 48 (2002).

    Google Scholar 

  • Agatonovic-Kustrin, S. & Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000).

    CAS  PubMed  Article  Google Scholar 

  • Zupan, J. Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chim. Slov. 41, 327–327 (1994).

    CAS  Google Scholar 

  • Hopfield, J. J. Artificial neural networks. IEEE Circuits Devices Mag. 4, 3–10 (1988).

    Article  Google Scholar 

  • Zou, J., Han, Y. & So, S.-S. Overview of artificial neural networks. Artificial Neural Networks. 14–22 (2008).

  • Maind, S. B. & Wankar, P. Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2, 96–100 (2014).

    Google Scholar 

  • Wolpert, D. H. Stacked generalization. Neural Netw. 5, 241–259 (1992).

    Article  Google Scholar 

  • Pavlyshenko, B. In: IEEE Second International Conference on Data Stream Mining & Processing (DSMP). 255–258 (IEEE).

  • Jović, A., Brkić, K. & Bogunović, N. In: 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 1200–1205 (Ieee, 2015).

  • Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002).

    MATH  Article  Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  • Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. Understanding variable importances in forests of randomized trees. Adv. Neural. Inf. Process. Syst. 26, 431–439 (2013).

    Google Scholar 

  • Al-Hazim, N., Salem, Z. A. & Ahmad, H. Delay and cost overrun in infrastructure projects in Jordan. Procedia Eng. 182, 18–24 (2017).

    Article  Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article  MATH  Google Scholar 

  • Shehu, Z., Endut, I. R. & Akintoye, A. Factors contributing to project time and hence cost overrun in the Malaysian construction industry. J. Financ. Manag. Prop. Constr. 19, 55–75 (2014).

    Article  Google Scholar 

  • Akomah, B. B. & Jackson, E. N. Contractors’ perception of factors contributing to road project delay. Int. J. Constr. Eng. Manag. 5, 79–85 (2016).

    Google Scholar 

  • GitHub: Where the world builds software, https://github.com/.

  • Anbari, F. T. Earned value project management method and extensions. Proj. Manag. J. 34, 12–23 (2003).

    Article  Google Scholar 

  • Acebes, F., Pereda, M., Poza, D., Pajares, J. & Galán, J. M. Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques. Int. J. Proj. Manag. 33, 1597–1609 (2015).

    Article  Google Scholar 

  • Japkowicz, N. & Stephen, S. The class imbalance problem: A systematic study. Intell. data anal. 6, 429–449 (2002).

    MATH  Article  Google Scholar 

  • Chen, T. et al. Xgboost: extreme gradient boosting. R Packag. Version 0.4–2.1 1, 1–4 (2015).

    Google Scholar 

  • Guarino, A., Lettieri, N., Malandrino, D., Zaccagnino, R. & Capo, C. Adam or Eve? Automatic users’ gender classification via gestures analysis on touch devices. Neural Comput. Appl. 1–23 (2022).

  • Zaccagnino, R., Capo, C., Guarino, A., Lettieri, N. & Malandrino, D. Techno-regulation and intelligent safeguards. Multimed. Tools Appl. 80, 15803–15824 (2021).

    Article  Google Scholar 

  • Spread the love

    Leave a Reply

    Your email address will not be published.