Human placental extract activates a wide array of gene expressions related to skin functions | Scientific Reports – Nature.com

  • Krämer, U. & Schikowski, T. Recent Demographic Changes and Consequences for Dermatology. In Skin Aging (eds Gilchrest, B. A. & Krutmann, J.) (Springer-Verlag, 2006).

    Google Scholar 

  • Farage, M. A., Miller, K. W., Elsner, P. & Maibach, H. I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 30, 87–95 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Mesa-Arango, A. C., Flórez-Muñoz, S. V. & Sanclemente, G. Mechanisms of skin aging. Iatreia 30, 160–170 (2017).

    Article  Google Scholar 

  • Yagi, M. & Yonei, Y. Glycative stress and skin aging. Glycative Stress Res. 5, 50–54 (2018).

    Google Scholar 

  • Bocheva, G., Slominski, R. M. & Slominski, A. T. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 20, 2798 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Slominski, A. T. et al. Sensing the environment: Regulation of local and global homeostasis by the skin neuroendocrine system Andrzej. Adv. Anat. Embryol. Cell Biol. 212, 1–6 (2012).

    Article  Google Scholar 

  • Nejati, R., Kovacic, D. & Slominski, A. Neuro-immune-endocrine functions of the skin: An overview. Expert Rev. Dermatol. 8, 581–583 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Slominski, A. & Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000).

    CAS  PubMed  Google Scholar 

  • Bocheva, G., Slominski, R. M. & Slominski, A. T. The impact of vitamin D on skin aging. Int. J. Mol. Sci. 22, 9097 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bocheva, G. et al. Protective role of melatonin and its metabolites in skin aging. Int. J. Mol. Sci. 23, 1238 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Naylor, E. C., Watson, R. E. B. & Sherratt, M. J. Molecular aspects of skin ageing. Maturitas 69, 249–256 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Strnadova, K. et al. Skin aging: The dermal perspective. Clin. Dermatol. 37, 326–335 (2019).

    PubMed  Article  Google Scholar 

  • Ressler, S. et al. p16 INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379–389 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Waaijer, M. E. C. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).

    CAS  PubMed  Article  Google Scholar 

  • Kim, H. et al. Attenuation of intrinsic ageing of the skin via elimination of senescent dermal fibroblasts with senolytic drugs. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.18051 (2022).

    Article  PubMed  Google Scholar 

  • Tigges, J. et al. The hallmarks of fibroblast ageing. Mech. Ageing Dev. 138, 26–44 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Mukherjee, P. K., Maity, N., Nema, N. K. & Sarkar, B. K. Bioactive compounds from natural resources against skin aging. Phytomedicine 19, 64–73 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Sekar, M. Natural Products in Aging Skin. Aging (Elsevier Inc., 2020).

    Google Scholar 

  • Zasada, M. & Budzisz, E. Retinoids: Active molecules influencing skin structure formation in cosmetic and dermatological treatments. Postep. Dermatologii i Alergol. 36, 392–397 (2019).

    Article  Google Scholar 

  • Vollmer, D. L., West, V. A. & Lephart, E. D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int. J. Mol. Sci. 19, 5–8 (2018).

    Article  CAS  Google Scholar 

  • Yoshikawa, C., Koike, K., Takano, F., Sugiur, K. & Suzuki, N. Efficacy of porcine placental extract on wrinkle widths below the eye in climacteric women. Climacteric 17, 370–376 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Nagae, M. et al. Effect of porcine placenta extract supplement on skin condition in healthy adult women: A randomized, double-blind placebo-controlled study. Nutrients 12, 1–12 (2020).

    Google Scholar 

  • Tiwary, S. K. et al. Effect of placental-extract gel and cream on non-healing wounds. J. Wound Care 15, 325–328 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Wu, J. et al. Laennec protects murine from concanavalin A-induced liver injury through inhibition of inflammatory reactions and hepatocyte apoptosis. Biol. Pharm. Bull. 31, 2040–2044 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Kim, Y. S. et al. Preventive and therapeutic potential of placental extract in contact hypersensitivity. Int. Immunopharmacol. 10, 1177–1184 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kong, M. & Park, S. B. Effect of human placental extract on health status in elderly koreans. Evidence-based Complement. Altern. Med. 2012, 1–5 (2012).

    Google Scholar 

  • Choi, J. Y. et al. Efficacy and safety of human placental extract for alcoholic and nonalcoholic steatohepatitis: An open-label, randomized, comparative study. Biol. Pharm. Bull. 37, b13-00979 (2014).

    Article  Google Scholar 

  • Karasawa, Y. et al. Clinical treatment test of Melsmon on menopausal disorder. Medicat. Treat. 9, 1–10 (1981).

    Google Scholar 

  • Kong, M. H. et al. Effect of human placental extract on menopausal symptoms, fatigue, and risk factors for cardiovascular disease in middle-aged Korean women. Menopause 15, 296–303 (2008).

    PubMed  Article  Google Scholar 

  • Lee, Y.-K., Chung, H. H. & Kang, S.-B. Efficacy and safety of human placenta extract in alleviating climacteric symptoms: Prospective, randomized, double-blind, placebo-controlled trial. J. Obstet. Gynaecol. Res. 35, 1096–1101 (2009).

    PubMed  Article  Google Scholar 

  • Yoshikawa, C. et al. Effect of porcine placental extract on collagen production in human skin fibroblasts in vitro. Gynecol. Obstet. https://doi.org/10.4172/2161-0932.1000186 (2013).

    Article  Google Scholar 

  • Imamura, Y., Honda, Y., Masuno, K., Nakamura, H. & Wang, P. L. Effects of placental extract on cell proliferation, type I collagen production, and ALP secretion in human osteosarcoma cell line Saos-2. J. Hard Tissue Biol. 26, 157–160 (2017).

    CAS  Article  Google Scholar 

  • Akagi, H. et al. Evaluation of collagen type-1 production and anti-inflammatory activities of human placental extracts in human gingival fibroblasts. J. Hard Tissue Biol. 25, 277–281 (2016).

    CAS  Article  Google Scholar 

  • Pfisterer, K., Shaw, L. E., Symmank, D. & Weninger, W. The extracellular matrix in skin inflammation and infection. Front. Cell Dev. Biol. 9, 1578 (2021).

    Article  Google Scholar 

  • Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, 1–19 (2011).

    CAS  Article  Google Scholar 

  • Midwood, K. S. & Schwarzbauer, J. E. Elastic fibers: Building bridges between cells and their matrix. Curr. Biol. 12, 279–281 (2002).

    Article  Google Scholar 

  • Katsuta, Y. et al. Fibulin-5 accelerates elastic fibre assembly in human skin fibroblasts. Exp. Dermatol. 17, 837–842 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Iozzo, R. V. Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).

    CAS  PubMed  Article  Google Scholar 

  • Wight, T. N. Versican: A versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 14, 617–623 (2002).

    CAS  PubMed  Article  Google Scholar 

  • Ricciardelli, C., Sakko, A. J., Ween, M. P., Russell, D. L. & Horsfall, D. J. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev. 28, 233–245 (2009).

    PubMed  Article  Google Scholar 

  • Theocharis, A. D. Versican in health and disease. Connect. Tissue Res. 49, 230–234 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Gonzalez Rico, J. et al. The role of versican in the skin ECM and its interaction with hyaluronic acid. Biomecánica https://doi.org/10.5821/sibb.27.1.9279 (2019).

    Article  Google Scholar 

  • Juhl, P. et al. Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis. Sci. Rep. 10, 17300 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gurujeyalakshmi, G. & Giri, S. N. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: Downregulation of TGF-β and procollagen I and III gene expression. Exp. Lung Res. 21, 791–808 (1995).

    CAS  PubMed  Article  Google Scholar 

  • Hansen, N. U. B. et al. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respir. Res. 17, 76 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Park, S. Y., Phark, S., Lee, M., Lim, J. Y. & Sul, D. Anti-oxidative and anti-inflammatory activities of placental extracts in benzo[a]pyrene-exposed rats. Placenta 31, 873–879 (2010).

    CAS  PubMed  Article  Google Scholar 

  • Ahsan, S. & Drăghici, S. Identifying Significantly Impacted Pathways and Putative Mechanisms with iPathwayGuide. Curr. Protoc. Bioinforma. 57, 7.15.1-7.15.30 (2017).

    Article  Google Scholar 

  • Spread the love

    Leave a Reply

    Your email address will not be published.