Classification of Parkinson’s disease and its stages using machine learning | Scientific Reports – Nature.com

  • Wiens, J. & Shenoy, E. S. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis. 66, 149–153. https://doi.org/10.1093/CID/CIX731 (2018).

    Article  PubMed  Google Scholar 

  • Templeton, J. M., Poellabauer, C. & Schneider, S. Design of a neurocognitive digital health system (NDHS) for neurodegenerative diseases. in Proceedings of the 2021 Workshop on Future of Digital Biomarkers 26–33, https://doi.org/10.1145/3469266.3471157 (2021).

  • Far, M. S., Eickhoff, S. B., Goni, M. & Dukart, J. Exploring test-retest reliability and longitudinal stability of digital biomarkers for Parkinson disease in the m-power data set: Cohort study. J. Med. Internet Res. 23, e26608. https://doi.org/10.2196/26608 (2021).

    Article  Google Scholar 

  • Waring, J., Lindvall, C. & Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 104, 101822. https://doi.org/10.1016/J.ARTMED.2020.101822 (2020).

    Article  PubMed  Google Scholar 

  • Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A. & Escobar, G. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health 33, 1123–1131. https://doi.org/10.1377/HLTHAFF.2014.0041 (2017).

    Article  Google Scholar 

  • Marella, W. M., Sparnon, E. & Finley, E. Screening electronic health record-related patient safety reports using machine learning. J. Patient Saf. 13, 31–36. https://doi.org/10.1097/PTS.0000000000000104 (2017).

    Article  PubMed  Google Scholar 

  • Deng, K. et al. Heterogeneous digital biomarker integration out-performs patient self-reports in predicting Parkinson’s disease. Commun. Biol.https://doi.org/10.1038/s42003-022-03002-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maetzler, W. & Pilotto, A. Digital assessment at home: mPower against Parkinson disease. Nat. Rev. Neurol. 2021(17), 661–662. https://doi.org/10.1038/s41582-021-00567-9 (2021).

    Article  Google Scholar 

  • Hansen, C., Sanchez-Ferro, A. & Maetzler, W. How mobile health technology and electronic health records will change care of patients with Parkinson’s disease. J. Parkinson Dis.https://doi.org/10.3233/JPD-181498 (2018).

    Article  Google Scholar 

  • Byrom, B., Wenzel, K., Pierce, J., Wenzel, K. & Pierce, J. Computerised clinical assessments: Derived complex clinical endpoints from patient self-report data. EPro 1, 179–202. https://doi.org/10.4324/9781315580142-14 (2016).

    Article  Google Scholar 

  • Templeton, J. M., Poellabauer, C. & Schneider, S. The Case for Symptom-Specific Neurological Digital Biomarkers (Springer, 2021).

    Google Scholar 

  • Kumar, S. et al. Mobile health technology evaluation. Am. J. Prev. Med. 45, 228–236. https://doi.org/10.1016/j.amepre.2013.03.017 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Templeton, J. M., Poellabauer, C. & Schneider, S. Enhancement of neurocognitive assessments using smartphone capabilities: Systematic review. JMIR mHealth and uHealth 8, e15517. https://doi.org/10.2196/15517 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Löfgren, N., Conradsson, D., Rennie, L., Moe-Nilssen, R. & Franzén, E. The effects of integrated single- and dual-task training on automaticity and attention allocation in Parkinson’s disease: A secondary analysis from a randomized trial. Neuropsychology 33, 147–156. https://doi.org/10.1037/neu0000496 (2019).

    Article  PubMed  Google Scholar 

  • Nasreddine, Z. S. et al. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x (2005).

    Article  PubMed  Google Scholar 

  • Tombaugh, T. N. & McIntyre, N. J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 40, 922–935. https://doi.org/10.1111/j.1532-5415.1992.tb01992.x (1992).

    CAS  Article  PubMed  Google Scholar 

  • Neff, C., Wang, M. C. & Martel, H. Using the PDQ-39 in routine care for Parkinson’s disease. Parkinson. Relat. Disord. 53, 105–107. https://doi.org/10.1016/J.PARKRELDIS.2018.05.019 (2018).

    Article  Google Scholar 

  • Deshpande, P., Sudeepthi, B., Rajan, S. & Abdul Nazir, C. Patient-reported outcomes: A new era in clinical research. Perspect. Clin. Res. 2, 137. https://doi.org/10.4103/2229-3485.86879 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan, A. et al. Using smartphones and machine learning to quantify Parkinson disease severity the mobile Parkinson disease score. JAMA Neurol. 75, 876–880. https://doi.org/10.1001/jamaneurol.2018.0809 (2018).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • De Vos, M., Prince, J., Buchanan, T., FitzGerald, J. J. & Antoniades, C. A. Discriminating progressive supranuclear palsy from Parkinson’s disease using wearable technology and machine learning. Gait Posture 77, 257–263. https://doi.org/10.1016/J.GAITPOST.2020.02.007 (2020).

    Article  PubMed  Google Scholar 

  • Bhardwaj, R., Nambiar, A. R. & Dutta, D. A study of machine learning in healthcare. Proc. Int. Comput. Softw. Appl. Conf. 2, 236–241. https://doi.org/10.1109/COMPSAC.2017.164 (2017).

    Article  Google Scholar 

  • Hadirah, N., Anwar, K., Saian, R. & Abu Bakar, S. An enhanced ant colony optimization with gini index for predicting type 2 diabetes. AIP Proc.https://doi.org/10.1063/5.0057315 (2021).

    Article  Google Scholar 

  • Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 1–16. https://doi.org/10.1186/S12911-019-1004-8 (2019).

    Article  Google Scholar 

  • Ricciardi, C. et al. Classifying different stages of Parkinson’s disease through random forests. IFMBE Proc. 76, 1155–1162. https://doi.org/10.1007/978-3-030-31635-8_140 (2019).

    Article  Google Scholar 

  • Domingos, P. Tapping into the folk knowledge needed to advance machine learning applications. Reviewhttps://doi.org/10.1145/2347736.2347755 (2012).

    Article  Google Scholar 

  • Vega, J. et al. Back to analogue: Self-reporting for Parkinson’s disease. J. Parkinson Dis.https://doi.org/10.1145/3173574.3173648 (2018).

    Article  Google Scholar 

  • Nicolson, P. J., Hinman, R. S., Wrigley, T. V., Stratford, P. W. & Bennell, K. L. Self-reported home exercise adherence: A validity and reliability study using concealed accelerometers. J. Orthop. Sports Phys. Ther. 48, 943–950. https://doi.org/10.2519/jospt.2018.8275 (2018).

    Article  PubMed  Google Scholar 

  • Reychav, I. et al. How reliable are self-assessments using mobile technology in healthcare? The effects of technology identity and self-efficacy. Comput. Hum. Behav. 91, 52–61. https://doi.org/10.1016/j.chb.2018.09.024 (2019).

    Article  Google Scholar 

  • Prince, S. A. et al. A comparison of self-reported and device measured sedentary behaviour in adults: A systematic review and meta-analysis. AIP Proc.https://doi.org/10.1186/s12966-020-00938-3 (2020).

    Article  Google Scholar 

  • Hoehn, M. M. & Yahr, M. D. Parkinsonism. Neurology 17, 427–427. https://doi.org/10.1212/WNL.17.5.427 (1967).

    CAS  Article  PubMed  Google Scholar 

  • Padman, N., Swarnalatha, R., Venkatesh, V. & Kumar, N. Telediagnosis of Parkinson’s disease symptom severity using H&Y scale. J. Eng. Sci. Technol. 15, 1466–1480 (2020).

    Google Scholar 

  • Goetz, C. G. et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170. https://doi.org/10.1002/mds.22340 (2008).

    Article  PubMed  Google Scholar 

  • Martinez-Martin, P. et al. Validation study of the hoehn and yahr scale included in the MDS-UPDRS. Mov. Disord. 33, 651–652. https://doi.org/10.1002/MDS.27242 (2018).

    Article  PubMed  Google Scholar 

  • Evers, L. J., Krijthe, J. H., Meinders, M. J., Bloem, B. R. & Heskes, T. M. Measuring Parkinson’s disease over time: The real-world within-subject reliability of the MDS-UPDRS. Mov. Disord. 34, 1480–1487. https://doi.org/10.1002/MDS.27790 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Post, B. et al. Young onset Parkinson’s disease: A modern and tailored approach. J. Parkinson Dis.https://doi.org/10.3233/JPD-202135 (2020).

    Article  Google Scholar 

  • Qutubuddin, A. A. et al. Validating the Berg Balance Scale for patients with Parkinson’s disease: A key to rehabilitation evaluation. Arch. Phys. Med. Rehabil. 86, 789–792. https://doi.org/10.1016/J.APMR.2004.11.005 (2005).

    Article  PubMed  Google Scholar 

  • Bhatt, T., Yang, F., Mak, M. K., Hui-Chan, C.W.-Y. & Pai, Y.-C. Effect of externally cued training on dynamic stability control during the sit-to-stand task in people with Parkinson disease. Phys. Ther. 93, 492–503. https://doi.org/10.2522/PTJ.20100423 (2013).

    Article  PubMed  Google Scholar 

  • Brusse, K. J., Zimdars, S., Zalewski, K. R. & Steffen, T. M. Testing functional performance in people With Parkinson disease. Phys. Ther. 85, 134–141. https://doi.org/10.1093/PTJ/85.2.134 (2005).

    Article  PubMed  Google Scholar 

  • Duncan, R. P., Leddy, A. L. & Earhart, G. M. Five times sit to stand test performance in Parkinson disease. Arch. Phys. Med. Rehabil. 92, 1431. https://doi.org/10.1016/J.APMR.2011.04.008 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Templeton, J. M., Poellabauer, C. & Schneider, S. Design of a Mobile-Based Neurological Assessment Tool for Aging Populations. 166–185, (Springer, 2021). https://doi.org/10.1007/978-3-030-70569-5_11.

  • Scarpina, F. & Tagini, S. The stroop color and word test. Front. Psychol. 8, 557. https://doi.org/10.3389/fpsyg.2017.00557 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dangare, C. S., Apte, S. S. & Student, M. E. Improved study of heart disease prediction system using data mining classification techniques. Int. J. Comput. Appl. 47, 975–999 (2012).

    Google Scholar 

  • Aydın, F. & Aslan, Z. Recognizing Parkinson’s disease gait patterns by vibes algorithm and Hilbert–Huang transform. Eng. Sci. Technol. Int. J. 24, 112–125. https://doi.org/10.1016/J.JESTCH.2020.12.005 (2021).

    Article  Google Scholar 

  • de Andrade, J. B. C. et al. Oxfordshire community stroke project classification: A proposed automated algorithm. Eur. Stroke J. 6, 160–167. https://doi.org/10.1177/23969873211012136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghiasi, M. M., Zendehboudi, S. & Mohsenipour, A. A. Decision tree-based diagnosis of coronary artery disease: CART model. Comput. Methods Prog. Biomed. 192, 105400. https://doi.org/10.1016/J.CMPB.2020.105400 (2020).

    Article  Google Scholar 

  • Venkatasubramaniam, A. et al. Decision trees in epidemiological research. Emerg. Themes Epidemiol. 14, 1–12. https://doi.org/10.1186/S12982-017-0064-4/FIGURES/6 (2017).

    Article  Google Scholar 

  • Sharma, A., Scholar, R., Professor, A. & Gupta, M. Theoretical study of decision tree algorithms to identify pivotal factors for performance improvement: A review theoretical study of decision tree algorithms to identify pivotal factors for performance improvement: A review Pooja Gulati. Int. J. Comput. Appl. 141, 975–8887. https://doi.org/10.5120/ijca2016909926 (2016).

    Article  Google Scholar 

  • Kino, S. et al. A scoping review on the use of machine learning in research on social determinants of health: Trends and research prospects. SSM Popul. Health 15, 100836. https://doi.org/10.1016/J.SSMPH.2021.100836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, S. R., Singh, B. & Kaur, M. Classification of Parkinson disease using binary Rao optimization algorithms. Expert Syst. 38, e12674. https://doi.org/10.1111/EXSY.12674 (2021).

    Article  Google Scholar 

  • Li, Y. et al. Envelope learning view project intelligent algorithm and system view project classification of Parkinson’s disease by decision tree based instance selection and ensemble learning algorithms. J. Med. Imaging Health Inform. 7, 1–9. https://doi.org/10.1166/jmihi.2017.2033 (2017).

    Article  Google Scholar 

  • Gordon, L. Using Classification and Regression Trees (CART) in SAS® Enterprise Miner TM For Applications in Public Health. (2013).

  • Albers, E. A. et al. Visualization formats of patient-reported outcome measures in clinical practice: A systematic review about preferences and interpretation accuracy. J. Patient-Rep. Outcomes 6, 1–41. https://doi.org/10.1186/S41687-022-00424-3/TABLES/3 (2022).

    Article  Google Scholar 

  • Blake-Krebs, B. When Parkinson’s Strikes Early: Voices, Choices, Resources and Treatment, 1st ed. (HunterHouse, 2001).

  • Ryu, J., Vero, J., Dobkin, R. D. & Torres, E. B. Dynamic digital biomarkers of motor and cognitive function in Parkinson’s disease. J. Vis. Exp. 2019, e59827. https://doi.org/10.3791/59827 (2019).

    Article  Google Scholar 

  • Mazzoni, P., Shabbott, B. & Cortés, J. C. Motor control abnormalities in Parkinson’s disease. Cold Spring Harbor Perspect. Med.https://doi.org/10.1101/cshperspect.a009282 (2012).

    Article  Google Scholar 

  • Vianello, A., Chittaro, L., Burigat, S. & Budai, R. MotorBrain: A mobile app for the assessment of users’ motor performance in neurology. Comput. Methods Prog. Biomed. 143, 35–47. https://doi.org/10.1016/j.cmpb.2017.02.012 (2017).

    Article  Google Scholar 

  • Maguire, Á., Martin, J., Jarke, H. & Ruggeri, K. Getting closer? Differences remain in neuropsychological assessments converted to mobile devices. Psychol. Serv.https://doi.org/10.1037/ser0000307 (2018).

    Article  PubMed  Google Scholar 

  • Jacobson, N. C., Weingarden, H. & Wilhelm, S. Digital biomarkers of mood disorders and symptom change. NPJ Dig. Med. 2, 1–3. https://doi.org/10.1038/s41746-019-0078-0 (2019).

    Article  Google Scholar 

  • Pahuja, G. & Nagabhushan, T. N. A comparative study of existing machine learning approaches for Parkinson’s disease detection. IETE J. Res. 67, 4–14. https://doi.org/10.1080/03772063.2018.1531730 (2021).

    Article  Google Scholar 

  • Dijkhuis, T. B., Blaauw, F. J., van Ittersum, M. W., Velthuijsen, H. & Aiello, M. Personalized physical activity coaching: A machine learning approach. Sensors. 18, 623. https://doi.org/10.3390/S18020623 (2018).

    ADS  Article  PubMed Central  Google Scholar 

  • Templeton, J. M., Poellabauer, C. & Schneider, S. Towards symptom-specific intervention recommendation systems. J. Parkinson’s Dis. 12, 1621–1631. https://doi.org/10.3233/JPD-223214 (2022).

    Article  Google Scholar 

  • Spread the love

    Leave a Reply

    Your email address will not be published.