Automated machine learning for differentiation of hepatocellular carcinoma from intrahepatic cholangiocarcinoma on multiphasic MRI | Scientific Reports – Nature.com

  • Global Burden of Disease Liver Cancer et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015. JAMA Oncol. 3, 1683–1691. https://doi.org/10.1001/jamaoncol.2017.3055 (2017).

    Article  Google Scholar 

  • Yang, J. D. et al. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604. https://doi.org/10.1038/s41575-019-0186-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasgupta, P. et al. Global trends in incidence rates of primary adult liver cancers: A systematic review and meta-analysis. Front. Oncol. 10, 171–171. https://doi.org/10.3389/fonc.2020.00171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, M. et al. A nomogram incorporating six easily obtained parameters to discriminate intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Cancer Med. 7, 646–654. https://doi.org/10.1002/cam4.1341 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dodson, R. M. et al. Intrahepatic cholangiocarcinoma: Management options and emerging therapies. J. Am. Coll. Surg. 217, 736-750.e734. https://doi.org/10.1016/j.jamcollsurg.2013.05.021 (2013).

    Article  PubMed  Google Scholar 

  • Razumilava, N. & Gores, G. J. Cholangiocarcinoma. Lancet 383, 2168–2179. https://doi.org/10.1016/s0140-6736(13)61903-0 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen, N. et al. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update. Biosci. Trends 16, 20–30. https://doi.org/10.5582/bst.2022.01061 (2022).

    Article  PubMed  Google Scholar 

  • Marrero, J. A. & Welling, T. Modern diagnosis and management of hepatocellular carcinoma. Clin. Liver Dis. 13, 233–247. https://doi.org/10.1016/j.cld.2009.02.007 (2009).

    Article  PubMed  Google Scholar 

  • Renzulli, M., Golfieri, R., Bologna Liver Oncology Group. Proposal of a new diagnostic algorithm for hepatocellular carcinoma based on the Japanese guidelines but adapted to the Western world for patients under surveillance for chronic liver disease. J. Gastroenterol. Hepatol. 31, 69–80. https://doi.org/10.1111/jgh.13150 (2016).

    Article  PubMed  Google Scholar 

  • Park, H. J. et al. Non-enhanced magnetic resonance imaging as a surveillance tool for hepatocellular carcinoma: Comparison with ultrasound. J. Hepatol. 72, 718–724. https://doi.org/10.1016/j.jhep.2019.12.001 (2020).

    Article  PubMed  Google Scholar 

  • Lee, Y. J. et al. Hepatocellular carcinoma: Diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 275, 97–109. https://doi.org/10.1148/radiol.14140690 (2015).

    Article  PubMed  Google Scholar 

  • Colli, A. et al. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: A systematic review. Am. J. Gastroenterol. 101, 513–523. https://doi.org/10.1111/j.1572-0241.2006.00467.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • Pomfret, E. A. et al. Report of a national conference on liver allocation in patients with hepatocellular carcinoma in the United States. Liver Transpl. 16, 262–278. https://doi.org/10.1002/lt.21999 (2010).

    Article  PubMed  Google Scholar 

  • Yamasaki, S. Intrahepatic cholangiocarcinoma: Macroscopic type and stage classification. J. Hepatobiliary Pancreat. Surg. 10, 288–291. https://doi.org/10.1007/s00534-002-0732-8 (2003).

    Article  PubMed  Google Scholar 

  • Lim, J. H. Cholangiocarcinoma: Morphologic classification according to growth pattern and imaging findings. AJR Am. J. Roentgenol. 181, 819–827. https://doi.org/10.2214/ajr.181.3.1810819 (2003).

    Article  PubMed  Google Scholar 

  • Xu, J. et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers. Liver Int. 32, 1156–1164. https://doi.org/10.1111/j.1478-3231.2012.02783.x (2012).

    Article  PubMed  Google Scholar 

  • Sheng, R. F., Zeng, M. S., Rao, S. X., Ji, Y. & Chen, L. L. MRI of small intrahepatic mass-forming cholangiocarcinoma and atypical small hepatocellular carcinoma (</=3 cm) with cirrhosis and chronic viral hepatitis: a comparative study. Clin. Imaging 38, 265–272. https://doi.org/10.1016/j.clinimag.2013.12.022 (2014).

    Article  PubMed  Google Scholar 

  • Asayama, Y. et al. Arterial blood supply of hepatocellular carcinoma and histologic grading: Radiologic-pathologic correlation. AJR Am. J. Roentgenol. 190, W28-34. https://doi.org/10.2214/ajr.07.2117 (2008).

    Article  PubMed  Google Scholar 

  • Primary Liver Cancer in Japan. Clinicopathologic features and results of surgical treatment. Ann. Surg. 211, 277–287 (1990).

    Google Scholar 

  • Reau, N. & Poordad, F. Primary Liver Cancer: Surveillance, Diagnosis and Treatment (Springer, 2012).

    Book  Google Scholar 

  • Joo, I. et al. Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J. Magn. Reson. Imaging 44, 1330–1338. https://doi.org/10.1002/jmri.25287 (2016).

    Article  PubMed  Google Scholar 

  • Chernyak, V. et al. Liver imaging reporting and data system (li-rads) version 2018: Imaging of hepatocellular carcinoma in at-risk patients. Radiology 289, 816–830. https://doi.org/10.1148/radiol.2018181494 (2018).

    Article  PubMed  Google Scholar 

  • Cruz, J. A. & Wishart, D. S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–77 (2006).

    Article  Google Scholar 

  • Joseph, G. B. et al. Texture analysis of cartilage T2 maps: Individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls–data from the osteoarthritis initiative. Arthritis Res. Ther. 13, R153. https://doi.org/10.1186/ar3469 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Skogen, K. et al. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur. J. Radiol. 85, 824–829. https://doi.org/10.1016/j.ejrad.2016.01.013 (2016).

    Article  PubMed  Google Scholar 

  • Michoux, N. et al. Texture analysis on MR images helps predicting non-response to NAC in breast cancer. BMC Cancer 15, 574. https://doi.org/10.1186/s12885-015-1563-8 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rizzo, S. et al. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2, 36. https://doi.org/10.1186/s41747-018-0068-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A. & Moore, J. H. Automating biomedical data science through tree-based pipeline optimization. in European Conference on the Applications of Evolutionary Computation. 9597. https://doi.org/10.1007/978-3-319-31204-0_9 (2016).

  • Kutlu, H. & Avci, E. A novel method for classifying liver and brain tumors using convolutional neural networks, discrete wavelet transform and long short-term memory networks. Sensors https://doi.org/10.3390/s19091992 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Cohen, A. et al. CT Image-based decision support system for categorization of liver metastases into primary cancer sites: Initial results. Acad. Radiol. 24, 1501–1509. https://doi.org/10.1016/j.acra.2017.06.008 (2017).

    Article  PubMed  Google Scholar 

  • Yu, H. et al. Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI. J. Magn. Reson. Imaging 42, 1259–1265. https://doi.org/10.1002/jmri.24898 (2015).

    Article  PubMed  Google Scholar 

  • Cichos, F., Gustavsson, K., Mehlig, B. & Volpe, G. Machine learning for active matter. Nat. Mach. Intell. 2, 94–103. https://doi.org/10.1038/s42256-020-0146-9 (2020).

    Article  Google Scholar 

  • Olson, R. S., Bartley, N., Urbanowicz, R. J. & Moore, J. H. Evaluation of a tree-based pipeline optimization tool for automating data science. Proc. Genet. Evol. Comput. Conf. 2016, 485–492. https://doi.org/10.1145/2908812.2908918 (2016).

    Article  Google Scholar 

  • Waring, J., Lindvall, C. & Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 104, 101822. https://doi.org/10.1016/j.artmed.2020.101822 (2020).

    Article  PubMed  Google Scholar 

  • Le, T. T., Fu, W. & Moore, J. H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36, 250–256. https://doi.org/10.1093/bioinformatics/btz470 (2020).

    CAS  Article  PubMed  Google Scholar 

  • Feurer, M. et al. Efficient and robust automated machine learning. Adv. Neural Inf. Process. Syst. 28, 1–10 (2015).

    Google Scholar 

  • Auto_ml documentation. https://auto-ml.readthedocs.io/en/latest/ (2016).

  • LeDell, E. & Poirier, S. H2O AutoML: Scalable automatic machine learning. in Proceedings of the AutoML Workshop at ICML (2020).

  • Swearingen, T. et al. ATM: A distributed, collaborative, scalable system for automated machine learning. in 2017 IEEE International Conference on Big Data (Big Data), 151–162 (2017).

  • MLBox documentation. https://mlbox.readthedocs.io/en/latest/. (2017)

  • Orlenko, A. et al. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure. Pac. Symp. Biocomput. 23, 460–471 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Sun, H. et al. Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning. Eur. Radiol. 29, 6152–6162. https://doi.org/10.1007/s00330-019-06372-9 (2019).

    Article  PubMed  Google Scholar 

  • Su, X. et al. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol. https://doi.org/10.1093/neuonc/noz184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haniff, N. S. M. et al. Magnetic resonance imaging radiomics analysis for predicting hepatocellular carcinoma. in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 1–5 (2021).

  • Tao, P. et al. 3:”09 PM Abstract No. 299 automatic machine learning based on routine pre procedure magnetic resonance imaging to predict response of hepatocellular carcinoma following transcatheter arterial chemoembolization. J. Vasc. Interv. Radiol. 31, S137. https://doi.org/10.1016/j.jvir.2019.12.352 (2020).

    Article  Google Scholar 

  • Fedorov, A. et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).

    CAS  Article  Google Scholar 

  • Fowler, K. J., Potretzke, T. A., Hope, T. A., Costa, E. A. & Wilson, S. R. LI-RADS M (LR-M): Definite or probable malignancy, not specific for hepatocellular carcinoma. Abdom. Radiol. 43, 149–157. https://doi.org/10.1007/s00261-017-1196-2 (2018).

    Article  Google Scholar 

  • Zwanenburg, A. et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338. https://doi.org/10.1148/radiol.2020191145 (2020).

    Article  PubMed  Google Scholar 

  • Radiomics-develop documentation. https://github.com/mvallieres/radiomics-develop. (2019)

  • Galloway, M. M. Texture analysis using gray level run lengths. Comput. Graphics Image Process. 4, 172–179 (1975).

    Article  Google Scholar 

  • Thibault, G. et al. Texture indexes and gray level size zone matrix. Application to Cell Nuclei Classification. PRIP, 140–145 (2009).

  • Haralick, R. M., Shanmugam, K. & Dinstein, I. H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1, 610–621 (1973).

    Article  Google Scholar 

  • Renzulli, M. et al. LI-RADS: A great opportunity not to be missed. Eur. J. Gastroenterol. Hepatol. 31, 283–288. https://doi.org/10.1097/MEG.0000000000001269 (2019).

    Article  PubMed  Google Scholar 

  • Min, J. H. et al. EASL versus LI-RADS: Intra-individual comparison of MRI with extracellular contrast and gadoxetic acid for diagnosis of small HCC. Liver Int. 41, 2986–2996. https://doi.org/10.1111/liv.15012 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Yasaka, K., Akai, H., Abe, O. & Kiryu, S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study. Radiology 286, 887–896. https://doi.org/10.1148/radiol.2017170706 (2018).

    Article  PubMed  Google Scholar 

  • Juntu, J., Sijbers, J., De Backer, S., Rajan, J. & Van Dyck, D. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J. Magn. Reson. Imaging 31, 680–689. https://doi.org/10.1002/jmri.22095 (2010).

    Article  PubMed  Google Scholar 

  • Le, T. T., Fu, W. & Moore, J. H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 30, 250–256. https://doi.org/10.1093/bioinformatics/btz470 (2020).

    CAS  Article  Google Scholar 

  • Shortliffe, E. H. & Sepúlveda, M. J. Clinical decision support in the era of artificial intelligence. JAMA 320, 2199–2200. https://doi.org/10.1001/jama.2018.17163 (2018).

    Article  PubMed  Google Scholar 

  • Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3, 17. https://doi.org/10.1038/s41746-020-0221-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovoli, F. et al. Management of adverse events with tailored sorafenib dosing prolongs survival of hepatocellular carcinoma patients. J. Hepatol. 71, 1175–1183. https://doi.org/10.1016/j.jhep.2019.08.015 (2019).

    CAS  Article  PubMed  Google Scholar 

  • Tovoli, F. et al. Inter-operator variability and source of errors in tumour response assessment for hepatocellular carcinoma treated with sorafenib. Eur. Radiol. 28, 3611–3620. https://doi.org/10.1007/s00330-018-5393-3 (2018).

    Article  PubMed  Google Scholar 

  • Wengert, G. J. et al. Differentiation of intrahepatic cholangiocellular carcinoma from hepatocellular carcinoma in the cirrhotic liver using contrast-enhanced MR imaging. Acad. Radiol. 24, 1491–1500. https://doi.org/10.1016/j.acra.2017.06.005 (2017).

    Article  PubMed  Google Scholar 

  • Spread the love

    Leave a Reply

    Your email address will not be published.